One-pot synthesis of bicrystalline titanium dioxide spheres with a core-shell structure as anode materials for lithium and sodium ion batteries

Z.C. Yana, L. Liub, and S.L. Choua

aInstitute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia

b Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China

E-mail: zy820@uowmail.edu.au

Abstract Summary: A novel bicrystalline titanium dioxide hierarchical sphere has been successfully synthesized via a facile one-pot solvothermal method. The hierarchical sphere has a core-shell structure with TiO\textsubscript{2}(B) nanosheets sheathing the anatase titanium dioxide sphere core.

Introduction: Currently, environmental disruption and economic recession of burning non-renewable and unsustainable fossil fuels have gained a great deal of awareness of renewable energy storages [1]. TiO\textsubscript{2} with various crystalline polymorphs has been extensively studied in LIBs, and recent reports show the properties as Na hosts [2]. As characterized by X-ray diffraction, scanning electron microscopy (SEM), and high-resolution transmission microscopy (HRTEM), the material shows a core-shell structure with TiO\textsubscript{2}(B) nanosheets sheathing the anatase titanium dioxide sphere core and optimized electrochemical performance. It exhibits high initial discharge capacity (114.8 mAh g-1) with almost no capacity fading after 100 cycles and still maintains at 91.7 mAh g-1 after 375 cycles at a super-high current density of 5040 mA g-1 (30 C). It also shows excellent rate capability in sodium ion batteries at various current densities ranging from 85 to 850 mA g-1. The unique hierarchical structure with excellent cycle performance and rate capability of this compound, make a compelling case for its development as an anode material for both lithium and sodium ion batteries.

Fig. 1. (a) TEM images of anatase@TiO\textsubscript{2}(B) bicrystalline hierarchical spheres and (b, c) its cycling performance at different current density in the range of 1.0 V-3.0 V in Li half-cells and Na half-cells, respectively.

References
