Synthesis and charge-discharge properties of LiF-Ni₅Mn₁₋ₓO composite as a cathode material for Li-ion batteries

Noritaka Kimura, Yusuke Izumi, Hiromasa Nasu, Juichi Arai, Kenkichiro Kobayashi, Yasumasa Tomita

Graduate School of Science and Technology, Shizuoka University
Graduate School of Engineering, Shizuoka University
YAMAHA Motor CO., LTD
Shizuoka University

E-mail: n93kimura@gmail.com

In our recent research, LiF-MO (M = Mn, Fe, Co, Ni) composites synthesized by the mechanical milling worked as the cathode material of lithium-ion batteries. The LiF-NiO and LiF-MnO composites showed the highest discharge voltage and capacity, respectively[1]. The discharge capacity of LiF-MnO composite was highest and the discharge voltage was lower than LiF-NiO. Therefore, it is predicted that discharge voltage can be improved by adding NiO to MnO while maintaining high discharge capacity of LiF-MnO composite. In this study, we synthesized LiF-NiₓMn₁₋ₓO composites from LiF and the solid solution of NiO and MnO, to obtain high energy density and characterized the composites.

Experimental
NiₓMn₁₋ₓO were synthesised by the mechanical milling for 6 h and calcine in vacuum for 6 h. LiF-NiₓMn₁₋ₓO composites in a molar ratio of 1:1 were synthesized by the mechanical milling of LiF and NiₓMn₁₋ₓO for 72 h. The synthesized composites were investigated by XRD, charge-discharge measurements, and XPS. The cathode sheets were fabricated using the synthesized composite sample (70 wt%), KETJENBLACK (20 wt%), and polyvinylidene fluoride (10 wt%). The charge-discharge measurements were performed using a stainless steel cell for voltages of 2.0-4.8 V (versus Li/Li⁺). The test cell was composed of a sheet of the synthesized composite as the cathode, a piece of lithium foil as the anode, and 1 M LiPF₆-EC/EMC (1:1 by volume) as the electrolyte.

Results & Conclusions
We confirmed NiₓMn₁₋ₓO and LiF-NiₓMn₁₋ₓO composites were synthesized from XRD measurement. Figure shows the discharge curves of LiF-NiₓMn₁₋ₓO composites. The discharge capacities of samples exceeded 150 mAh⁻¹. The average discharge voltage increased with the amount of Ni. The discharge capacity changed by adding Ni and reached the maximum value at Ni : Mn = 2:8 to be 279 mAh⁻¹. The energy density was also greatest value at Ni : Mn = 2:8, 868 Whkg⁻¹. The energy density of LiF-MnO(Ni : Mn = 0:10) composite was 610 Whkg⁻¹. Energy density improved by 42 % compared with LiF-MnO composites. Adding NiO to LiF-MnO composites was effective in improving energy density.

References: