Ta-LLZO/LZO solid electrolyte for solid-state Li-S battery

Huang Xiaoa, Lu Yanga, Jun Jina, Wen Zhaoyin a,*

a CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, P.R. China
zywen@mail.sic.ac.cn

Li$_7$La$_3$Zr$_2$O$_{12}$ (LLZO), i.e., the Li-Garnet solid electrolytes have the properties of high conductivity, stability against lithium metal and feasibility of preparation in open air. Thence LLZO is one of the promising candidates for solid-state batteries [1]. Ta doped LLZO can be stabilized to cubic phase at room temperature. La$_2$Zr$_2$O$_7$ (LZO) is introduced as a second phase additive to further improve the conductivity.

Li$_{6.4}$La$_3$Zr$_{1.4}$Ta$_{0.6}$O$_{12}$/LZO pellets were prepared by conventional solid-state reaction method with a densification process at 1250°C for 0.5 h [2, 3]. Ceramic pellets had a diameter of ~14mm and a thickness of ~1.4mm. The sintering of ceramics was operated inside platinum crucibles. The ceramic pellets prepared by this process exhibited high reproducibility. Molten lithium metal was attached to a ceramic face with a modification. Sulfur-carbon positive electrode with a small amount of electrolyte (DOL/DME/LiTFSI, 10μL) at the interface to improve the positive contact is applied to construct a lithium-sulfur battery and electrochemical performance thereof was evaluated.

Appearance, cross-section morphology, impedance spectra and phase composition of Ta-LLZO/LZO ceramics are shown in Fig.1. The uniformity of ceramics is good with a high relative density of 97%. The microstructure of the section is dense with clear grain boundaries. Impedance spectroscopy analysis showed that the conductivity was as high as 9.25×10$^{-4}$S/cm at 26°C.

Solid-state lithium-sulfur battery’s Coulomb efficiency is stabilized at 100% without any shuttle effect. The specific capacity remained 685mAh/g at 0.2C after 200 cycles.

References: