Induced AlF$_3$ segregation for the generation of reciprocal Al$_2$O$_3$ and LiF coating layer on self-generated LiMn$_2$O$_4$ surface of over-lithiated oxide based Li-ion battery

Soonchul Kwon a, Taeyoon Kim a, Sunghoon Hong a, Yongju Kwon a, Jongyeong Kim a, Yunshik Choi a, and Sihyun Lee a.

a Department of Civil and Environmental Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea

E-mail: sckwon@pusan.ac.kr

Abstract

For Li-ion batteries, AlF$_3$ coating has been known to modify the over-lithiated layered oxide (OLO) cathodes to produce stable cathodes, but during synthesis procedure, the environment of excess amount of Li metal and free-exposed oxygen may cause the formation of Al$_2$O$_3$ and LiF materials, separately. We investigated the possibility of separated coating formation of Al as Al$_2$O$_3$ and F as LiF from AlF$_3$ using density functional theory calculation, which suggests a favorable binding affinity of both Al$_2$O$_3$ and LiF phases to the OLO surface to support the preferable formation of coating layer of Al$_2$O$_3$ and LiF. Meanwhile, we found the well-distributed surface modification with the coating layers and a small amount of AlF$_3$ (< ~11 vol%) throughout various surface analyses using the well-known coating process of AlF$_3$ formation. Importantly, during the coating process LiF led to the transformation of OLO surface from Li$_2$MnO$_3$ to a self-generated structure of spinel-like LiMn$_2$O$_4$ phase, which enhances electronic conductivity. In addition, Al$_2$O$_3$ plays a key role in suppressing reactions between cathode and electrolyte, leading to stable cyclability. Experimental findings suggest that the well-distributed coating layer of two materials leads to a synergic effect on the enhanced electrochemical performance for high voltage operating Li-ion batteries.