Study on Surface Fluorination of Li-rich Layered Material Li$_{1.15}$Ni$_{0.17}$Co$_{0.11}$Mn$_{0.57}$O$_2$

Hou Xuwang, Mao Ya, Song Jinhua, Wang Yonga, Bai Qingyou, Xie Jing-ying*

a State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai 200254, China

E-mail: jyxie@mail.sim.ac.cn

Novel cathode materials with higher capacities and cyclability are urgently needed[1]. With a wide range of operating voltage (2.0-4.8V), a huge capacity (over 250 mAh/g) nearly twice as that of LiCoO$_2$ and a low cost as that of LiMn$_2$O$_4$, the Li-rich layered oxide materials is believed to be a promising cathode material for lithium ion batteries[2]. However, its practical application is limited by the initial irreversible capacity loss, poor rate capability and cyclability[3].

In this work, we develop a facile method to fluorinate Li$_{1.15}$Ni$_{0.17}$Co$_{0.11}$Mn$_{0.57}$O$_2$ with different temperatures. It’s found that the initial coulombic efficiency, discharge capacity and cyclability of the material are significantly improved after surface fluorination. As shown in Figure 1a, surface fluorination significantly improved the discharge capacity and cyclability of Li-rich layered material, in which the material fluorinated at 400 °C delivers the highest discharge capacity and capacity retention. Besides, the rate performance of Li$_{1.15}$Ni$_{0.17}$Co$_{0.11}$Mn$_{0.57}$O$_2$ at small rates (0.1C, 0.2C, 0.3C and 0.5C) has been improved by surface fluorination (Figure 1b).

Figure 1 Cyclic performance (a) and rate performance (b) of pristine material and materials fluorinated at different temperatures.

References: