Chemical and structural changes of 70Li$_2$S-30P$_2$S$_5$ solid electrolyte during heat treatment

Yuichi Hasegawa a, Yasuhiro Aoki b, Kengo Ogawa a, Takeshi Nakagawa a, Yoko Sakiyama b, Toshikatsu Kojima c, Mitsuharu Tabuchi c

a Toray Research Center Inc., 3-7, Sonoyma 3-chome, Otsu, Shiga, Japan
b Toray Industries Inc., 2-1-1, Nihonbashi muromachi-cho, Chuo-ku, Tokyo, Japan
c National Institute of Advanced Industrial Science and Technology (AIST), Midorigaoka 1-8-31, Ikeda, Osaka, Japan

E-mail: Yuichi_Hasegawa@trc.toray.co.jp

The sulfide solid electrolyte composed of 70Li$_2$S-30P$_2$S$_5$, known as Li$_3$P$_2$S$_{11}$, is promising material for all-solid-state battery, due to its high ion conductivity. It is synthesized by ball-milling processing and obtained as amorphous phase. Through heat treatment, it crystallizes and shows high ion conductivity$^{[1]}$. So, analyzing chemical structure of sulfide solid electrolyte during heat treatment is important for development of higher ion conductive material. In this study, we have investigated the chemical changes and crystallization of 70Li$_2$S-30P$_2$S$_5$ with heat treatment, using in situ Raman spectroscopy, and in situ X-ray diffraction, in situ outgas analysis (TPD-MS: temperature programmed desorption MS)$^{[2]}$.

70Li$_2$S-30P$_2$S$_5$ glass sample was synthesized from a mixture of 70 mol% Li$_2$S (Mitsuwa Chemical Co. Ltd.) and 30 mol% P$_2$S$_5$ (Sigma-Aldrich Corp.). The mixture was milled mechanically using a planetary ball-milling apparatus (P-6; Fritsch Japan) about 30 hours at 400 rpm under Ar atmosphere.

Figure 1 shows the temperature dependence of gas generation from 70Li$_2$S-30P$_2$S$_5$ glass sample. H$_2$S, deriving from impurities, was detected from around 160-220 °C, and S compounds, generating with change in the chemical structure of 70Li$_2$S-30P$_2$S$_5$, were also detected around 220-260 °C, and the second generation maximum was around 350-400 °C. To investigate what happened during each gas generation process, Raman spectra in the temperature region 1-4 were obtained (Figure 2). The observed Raman bands are assigned to PS stretching of PS$_{3^-}$ and P$_2$S$_4^{4-}$ structure. Comparison of the spectra in the temperature region 2 (Figure 2(a)), intensity ratio of P$_2$S$_7^{4-}$ against PS$_{3^-}$ was increased, and it suggested that PS$_{3^-}$ anion was changed to P$_2$S$_7^{4-}$ anion. In the temperature region 4 (Figure 2(b)), P$_2$S$_6^{4-}$ anion was detected after 375 °C heat treatment. The details will be discussed in the presentation considering the data of in situ XRD diffraction patterns.

References: