Modified Carbon as Additive for High Potential Li-Ion Cathode

Hamidreza Saneifar a, Nicolas Delaporte a, Karim Zaghib b and Daniel Bélanger a*

a Département de Chimie, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal (Québec) Canada H3C 3P8
b Institut de Recherche d’Hydro-Québec (IREQ), 1800 Boulevard Lionel Boulet, Varennes, Quebec J3X 1S1, Canada

E-mail: saneifar.hamidreza@courrier.uqam.ca

The functionalization of acetylene black carbon with hydrophobic (eg. \(-C_6H_4CF_3\)) and hydrophilic (eg. \(-C_6H_4SO_3H\)) groups was performed via the diazonium chemistry. Elemental analysis and X-ray photoelectron spectroscopy confirmed the attachment of the different substituted aryl groups at the surface of the carbon. The electrochemical performance of functionalized and unmodified carbon electrodes was investigated by cyclic voltammetry and galvanostatic cycling. The irreversible electrolyte degradation observed between 4.5 and 5.3 V vs. Li/Li\(^+\) was strongly diminished after modification. The different functionalized carbons were then utilized as conductive additives with high cathode material in half-cell. Improved capacity retention and higher discharge capacity were obtained for cathodes made with modified carbons.