Oxysulfide Solid Electrolytes for Lithium- and Sodium-Ion All-Solid-State Batteries

Theodosios Famprikisa,b,d, Pieremanuele Canepab,d, Ö. Ulaş Kudua,d, James A. Dawsonb,d, Benoît Fleutota,d, Jean-Noël Chotarda,d, Steffen Emgec,d, Matthias Grohc,d, Clare P. Greyc,d, Christian Masqueliera,d, M. Saiful Islamb,d

a Laboratoire de Réactivité et de Chimie des Solides (UMR CNRS 7314), Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex, France
b Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
c Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
d ALISTORE European Research Institute, FR CNRS 3104, 80039 Amiens Cedex, France

E-mail: theo.famprikis@u-picardie.fr

An important milestone in the development of bulk all-solid-state batteries has been the discovery of thio-LISICON and related materials by Kanno et al. [1]. A key aspect in that discovery was the replacement of small, hard oxide ions in the LISICON structure with larger, softer sulfide ions, resulting in solid crystalline materials that can conduct Li+ ions faster than liquid electrolytes [2]. Sulfide superionic conductors also present advantages in processing due to their mechanically compliant nature. However, sulfides have been shown to be quite unstable in the operating voltage range of batteries, and decompose in contact with electrode materials, limiting battery performance [3]. On the other hand, the original oxide materials are quite stable in wide voltage ranges. As such, we investigate oxysulfide compositions in search of materials that can satisfy the stringent requirements for application in an all-solid-state battery in terms of conductivity, stability and processability.

We follow a synergistic approach of synthesis, characterisation and modelling to elucidate the fundamental effects of composition and structure on the above-mentioned properties. Preliminary studies are performed on well-studied model systems composed of orthophosphate tetrahedra ([PO\textsubscript{4}]3— and [PS\textsubscript{4}]3—). Their bulk and local structures are investigated using neutron and x-ray diffraction, vibrational spectroscopy and nuclear magnetic resonance (NMR). Ionic conductivity is investigated over multiple scales using electrochemical impedance spectroscopy, NMR, and large-scale, force-field molecular dynamics simulations [4], [5]. (Electro-)chemical stability is investigated using electrochemical cycling, thermal- and structural analysis techniques.

This multidisciplinary approach allows us to screen and isolate solid electrolyte materials for all-solid-state battery applications, prepared through tailored synthesis routes.

References: