Sebaconitrile-base thermally-safe electrolytes for safety-reinforced lithium-ion batteries

Sung-Ju Cho a, Seok-Kyu Cho a, Sang-Ho Hong a, Dae-Eun Yu a, Sang-Young Lee a,* aDepartment of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea

E-mail: sungju0528@unist.ac.kr

Lithium-ion batteries safety concern becomes more serious in large-sized and high-capacity application fields such as electric vehicles (EVs) and grid scale energy storage systems, due to the flammability of conventional carbonate-based electrolytes. One promising solution to address the liquid electrolyte-induced safety issues is to replace with nonflammable, thermally-stable electrolytes. Here, we demonstrate a new electrolyte system composed of 1M LiTFSI (lithium bis-trifluoromethanesulphonimide) in sebaconitrile (SBN). The SBN is featured with high boiling temperature (~375 °C) (Figure 1a) and negligibly volatility up to a high temperature of 200 °C compare to the carbonate-based electrolyte showing a dramatic weight loss (Figure 1b), which are expected to enable significant improvements in high-temperature performance of SBN-based electrolytes. Based on the characterization of thermal/electrochemical properties of SBN-based electrolytes, their application to lithium-ion batteries is explored as a function of operating temperature. Notably, the cell incorporating SBN-based electrolytes show stable cycling performance at 80 °C(Figure 1c, d). This advantageous effect of SBN-based electrolytes on thermal stability of cell, in comparison to conventional carbonate-based liquid electrolytes, is discussed by scrutinizing the variation in AC impedance of cells and ionic conductivity of the electrolytes as a function of temperature (Figure 1e, f).

Figure 1. (a,b) Thermal characterization of (a) DSC profile of SBN (b) Dynamic TGA of SBN and EC/DMC. (c,e) High temperature (at 80 °C) cycling profiles of (c) SBN and (d) EC/DMC carbonate-based electrolytes (e) and their capacity retention. (f) High temperature (at 80 °C) ionic conductivity of SBN and EC/DMC-based electrolytes.

References: