Influence of Li$_2$MnO$_3$ Domain Size and Current Rate on the Electrochemical Properties of 0.5Li$_2$MnO$_3$·0.5LiCoO$_2$ Cathode Material

S. Kaewmalaa, N. Wiriyaa, P. Chantrasuwana, P. Pipitworarakulb, P. Limthongkulb, W. Lumphirata, S. Srilomsaka, and N. Meethonga,d.

aMaterials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.

bNational Metal and Materials Technology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand.

cSynchrotron Light Research Institute, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000 Thailand.

dIntegrated Nanotechnology Research Center, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.

E-mail: songyootkaewmala@gmail.com

Li and Mn rich layered oxide (xLi$_2$MnO$_3$·(1-x) LiCoO$_2$, M = Mn, Ni, Co, and Fe) materials have been considered as a cathode material for lithium ion batteries. Their high specific capacities of 200-250 mAh/g [1]. However, they often exhibit structural transformation from a layered to a spinel structure during cycling, leading to capacity and voltage decay as cycle number increases. To enhance their electrochemical performance, the structural stability of these materials must be improved. Currently, much research has reported that the structural characteristics of these cathode materials are largely dependent on preparation methods and testing conditions [2-3]. In this study, the impacts of Li$_2$MnO$_3$ domain size and current rate on electrochemical properties of 0.5Li$_2$MnO$_3$·0.5LiCoO$_2$ material was investigated. The results presented that a ball-milled cathode revealed higher structural stability than a sol-gel cathode, resulting from a larger Li$_2$MnO$_3$ domain size of the ball-milled cathode can retard structural transition of the cathode. Moreover, a fast cycling rate can also reduce possible the structural transformation from the layered structure to the spinel structure taken place upon cycling. The retarding structural transformation leads to high cycling stability.

![Figure 1](image)

Figure 1 Cycling stability of the prepared materials cycled at different C-rates.

References:

