HAXPES Study of Surface Films on LiNi$_{1/3}$Co$_{1/3}$Mn$_{1/3}$O$_2$ Positive Electrode Charged/discharged with Different Voltage Ranges

Akira Yanoa, Masahiro Shikanoa, Hikari Sakaeba, Hisao Kanzakia,†, and Hisao Kiuchib

aNational Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
bKyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
†Present Address: Maxell, Ltd., 1, Koizumi, Oyamazaki-cho, Kyoto 618-8525 Japan

E-mail: akira-yano@aist.go.jp

To understand and control the electrode/electrolyte interface is a key issue for the development of superior positive electrodes for Li-ion batteries. We have reported that the stability of the electrode/electrolyte interface of layered rock-salt positive electrode materials is strongly affected by the range of voltage change rather than the charge cutoff voltage itself.1 In this study, we have investigated the influence of the voltage range for the surface film of LiNi$_{1/3}$Co$_{1/3}$Mn$_{1/3}$O$_2$ (NCM) electrode by using hard x-ray photoelectron spectrometry (HAXPES).

Positive electrodes were fabricated from a mixture of NCM powder, acetylene black, and PVDF. The electrochemical characteristics of the samples were examined by coin cells with a Li-metal counter electrode. A 1M solution of LiPF$_6$ in EC + DEC was used as the electrolyte. The cells were cycled at 2.5–4.6 and 4.2–4.6 V at 1 C. The Li-ion transfer characteristics were measured at the electrode potential of 4.2 V by using AC impedance spectroscopy. The electronic structures of the NCM in the surface films were investigated by HAXPES (Ag La, 2.984 keV). The energy resolution of the monochromatized Ag La X-ray source was 0.7 eV.

Figure 1 shows charge transfer resistance (R_{ct}) versus cycle number of the cells. The increase in R_{ct} during the cycle tests was significantly suppressed in the range of 4.2–4.6 V compared to that of 2.5–4.6 V. Figure 2 shows P 1s HAXPES spectra of the positive electrode charged to 4.6 V after 12 cycles of 2.5–4.6 V and 4.2–4.6 V. The chemical states of the surface films varied in the voltage range during the cycle-test even at the same charge voltage. The change of the electronic structures in the surface films during the charge/discharge and the degradation mechanism of the electrode/electrolyte interface will be discussed.

Acknowledgement

This work was supported by NEDO under RISING2 project, Japan.

References: