Fast Li-ion Transport by Using Binary Solvent Systems for Glyme-based Electrolyte of Li-air Batteries

Morihiro Saitoa, Shunya Ishiib, Shinya Yamadaa, Taro Ishikawaa, Taichi Fujinamia, Hiromi Otsukaa, Kimihiko Itob, Yoshimi Kubob

a Department of Applied Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan
b National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

a E-mail: mosaito@cc.tuat.ac.jp

In recent years, non-aqueous type Li-air batteries (LABs) have attracted much attention as large-scale energy storage devices for electric vehicles because of the high energy density over 5 times larger than that of the conventional Li-ion batteries (LIBs) [1]. However, there are some problems to be solved for the practical use such as smooth deposition/decomposition reaction of Li$_2$O$_2$ at air electrode and suppression of Li dendrite growth at Li metal negative electrode. Especially, for the electrolyte, high Li-ion conductivity and durability against O$_2$- radical generated at air electrode are quite important. To address the later issue, glyme solvent-based electrolytes are usually used for LABs because of the low electric constants ε of glymes. However, the solvent property essentially lowers the dissociation degree of Li salt and increases the viscosity of electrolytes. In this study, for the purpose of improving the Li-ion conductivity, we prepared some binary solvent systems for glyme-based electrolytes, i.e. 1.0 M of LiTfO/tetraglyme (G4), LiNi(SO$_2$F)$_2$(LiFSI)/G4, etc., and investigated the viscosity η of electrolyte, self-diffusion coefficients D of ions and solvents by a PGSE-NMR [2] together with the apparent dissociation degree α_{app} of Li salts. To enhance both mobility μ and number n of Li$^+$ carrier ion, DMSO and acetonitrile (AN) were used as the mixing solvents with lower η and higher ε (DMSO: 47, AN: 36) than G4 (7.9).

Figure 1 shows the η and σ for 1.0 M LiTfO/G4+X (X= DMSO, AN). The η decreased with an increase in DMSO and AN contents, and as a result the σ effectively improved. From the viewpoint of μ of Li$^+$ carrier ion, the D_{Li^+} also increased by mixing the solvents (Fig. 2) especially for AN. On the other hand, the α_{app} estimated from the D and σ by using Nernst-Einstein equation [2] was also enhanced by increasing the solvents especially for DMSO (Fig. 3). Namely, the solvents with low viscosities and high electric constants effectively improved not only μ but also n of Li$^+$ carrier ion in the electrolyte. The effect for the n was more clearly confirmed for the electrolytes containing Li salts with low α. The electrochemical stabilities and LAB cell performances will be reported in the meeting.

This study was supported by JST Project “ALCA-SPRING”, Japan.