Ionically Enhanced Silicon Nano Alloy Anode Enabled by Li$_{1.3}$Al$_{0.3}$Ti$_{1.7}$(PO$_4$)$_3$ Solid State Electrolyte

Jong-Soo Choa, Alla Letfullinab, Md-Jamal Uddina, David Leec, Sung-Jin Choa*

a Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, 2907 E Gate City Blvd, Greensboro, NC 27401 USA

b Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, 2907 E Gate City Blvd, Greensboro, NC 27401

c BioSolar, Inc., 27936 Lost Canyon Rd, Suite 202, Santa Clarita, CA 91387

Email: scho1@ncat.edu

This study reports a Silicon (Si) nanoalloy composite anode enabled by Li$_{1.3}$Al$_{0.3}$Ti$_{1.7}$(PO$_4$)$_3$ Solid State Electrolyte to enhance its ionic conductivity. Si is one of the most promising anode material candidate with the potential to meet the increasing demands of high energy and power for the next generation lithium ion batteries. However, Si-based anodes suffer from capacity fading and poor initial cycle efficiency due to its intrinsic material properties. Herein we propose an ionically enhanced Si nanoalloy composite material with one of the popular solid-state electrolytes Li$_{1.3}$Al$_{0.3}$Ti$_{1.7}$(PO$_4$)$_3$, rather than carbonaceous based electrical conducting additives. We believe that this novel concept is not only enhancing Si electrode’s ionic property along with reducing lithium loss due to continuous SEI (Solid Electrolyte Interface) growth over the cycling and also improve lithium diffusion at higher current rate.

![Figure 1](image1.png)

Figure 1. (a) Electrochemical Impedance Spectroscopy (b) Full Cell Cycle Performance