Versatile Electrochemical Ways to Fabricate Lithium Sulfide Cathodes in Glyme-based Bath

Yunwen Wua, Takuya Jina, Toshiyuki Mommaa,b, Tokihiko Yokoshimab, Hiroki Narab and Tetsuya Osakaa,b

aGraduate School of Advanced Science and Engineering, Waseda University 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
bResearch Organization for Nano and Life Innovation, Waseda University 513, Wasedatsurumakicho, Shinjuku-ku, Tokyo 162-0041, Japan

E-mail: tlwuyunwen@fuji.waseda.jp

Lithium sulfide (Li\textsubscript{2}S) is an attractive cathode alternate material for Li-ion battery due to its high specific capacity (1165 mAh g-1).1 Li\textsubscript{2}S suffers from severe dissolution of the intermediate product polysulfides in electrolyte and low electronic conductivity. Confining sulfur species in conductive porous host materials2,3 is a way widely reported to alleviate the dissolution of polysulfide as well as improving the conductivity. The high melting point of Li\textsubscript{2}S (1372 °C) makes the popular melting-infiltration method difficult for the Li\textsubscript{2}S based composite. As a result, the practical approach to build the Li\textsubscript{2}S/conductive host composite with high performance remains challenging.

In this study, the cost-effective and easy operate electrochemical ways, namely constant current and constant voltage have been studied to fabricate Li\textsubscript{2}S cathodes. The glyme-based electrolyte shows capability of suppressing polysulfide dissolution during electrochemical process. From the initial charge discharge curve showed in Figure 1a, the Li\textsubscript{2}S cathode made by constant voltage method showed much higher charge capacity than that of the Li\textsubscript{2}S cathode made by constant current method, indicating the well fabricated Li\textsubscript{2}S cathode. Figure 1b compares the cycling performance at 0.2 C-rate of the two Li\textsubscript{2}S cathodes made by the electrochemical ways, from which the improved capacity performance of the Li\textsubscript{2}S cathode made by constant voltage can be observed. We believe this constant voltage electrochemical way to make Li\textsubscript{2}S can be applied in various S cathodes, paving a step forward realizing the sulfur Li-ion battery.

![Figure 1](image_url)

Figure 1. (a) Initial charge discharge curves (b) Cycling performance comparison of the Li\textsubscript{2}S cathodes fabricate by constant current and constant voltage electrochemical methods.

References: