Semi-IPN Composite Gel Polymer Electrolyte with Vinyl-Functionalized Silica for Lithium-Oxygen Batteries with Good Cycling Stability

Hyun-Sik Woo a, Hyebeen Son a, Ji-Yun Min a, Samuel Seo b, Ho-Taek Lee b, Dong-Won Kim a

a Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
b R & D Division, Hyundai Motor Company, Gyeonggi-do 16082, Korea

E-mail: whs0236@hanyang.ac.kr

Developing a stable electrolyte not only to suppress solvent evaporation and dendritic lithium growth, but also to endure the attack by superoxide anion radical formed during electrochemical reactions is an important challenge for long-term Li-O2 batteries.[1-3] In this study, the semi-interpenetrating polymer network (semi-IPN) composite gel electrolyte was synthesized from poly(methyl methacrylate), divinylbenzene, and vinyl-functionalized silica. It effectively encapsulated electrolyte solution and exhibited stable interfacial characteristics toward lithium electrode. Matrix polymers in the semi-IPN composite gel electrolyte also retained high stability without any decomposition by superoxide anion radicals during cycling. Our results demonstrate that the cycling performance of a lithium-oxygen cell composed of a lithium negative electrode and porous carbon positive electrode (without a catalyst) was remarkably improved with good capacity retention as compared to liquid electrolyte-based Li-O2 batteries.

Figure 1. Schematic illustration of the three-dimensional semi-IPN composite gel electrolyte.

References: