Tailored Organic Electrode Material Compatible with Sulfide Electrolyte for Stable All-Solid-State Sodium Batteries

Xiaowei Chia, Yanliang Lianga, Fang Haoa, Ye Zhanga, Justin Whiteleyb, Hui Donga, Pu Hua, Sehee Leeb, Yan Yaoa

aDepartment of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, USA

bDepartment of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado, 80309, USA

E-mail: yyao4@uh.edu

All-solid-state sodium batteries (ASSSBs) have been recognized as a promising battery technology to address the safety and cost concerns of lithium-ion batteries with nonflammable solid-state electrolyte and ubiquitous sodium resources. However, the intrinsic mismatch between low anodic decomposition potential of superionic sulfide electrolytes and high operating potentials of conventional sodium-ion cathode materials leads to chemical reactions at the cathode-electrolyte interface and thus unstable cycling performance. Here we report for the first time an organic carbonyl compound, Na\textsubscript{4}C\textsubscript{6}O\textsubscript{6}, as a high-capacity cathode material in all-solid-state batteries that is chemically and electrochemically compatible with sulfide electrolyte. A bulk-type ASSSB based on Na\textsubscript{4}C\textsubscript{6}O\textsubscript{6} cathode, Na\textsubscript{3}PS\textsubscript{4} electrolyte, and Na\textsubscript{12}Sn\textsubscript{4} anode shows high specific capacity (184 mAh g-1) and the highest specific energy (395 Wh kg-1) among sodium intercalation compound-based ASSSBs. The cell shows capacity retention of 76\% after 100 cycles at 0.1C and 70\% after 400 cycles at 0.2C, representing the record cycling stability in ASSSBs reported to date. Electrochemical analyses confirm that the moderate redox potential of Na\textsubscript{4}C\textsubscript{6}O\textsubscript{6} is crucial for the stability of cathode-electrolyte interface thus long cycle life. Additionally, Na\textsubscript{4}C\textsubscript{6}O\textsubscript{6} could also function as an anode material with specific capacity of 187 mAh g-1, thereby enabling a symmetric all-organic ASSSB with Na\textsubscript{4}C\textsubscript{6}O\textsubscript{6} as both cathode and anode materials.

Figure 1. (Left) Potential–capacity plot for previously reported intercalation cathode materials and Na\textsubscript{4}C\textsubscript{6}O\textsubscript{6} for ASSSBs. Shadow and blank bars represent the observed and theoretical specific capacities, respectively. Specific energy is calculated considering a sodium anode. (Right) Capacity and coulombic efficiency vs. cycle number at 0.1C for an ASSSB made of Na\textsubscript{4}C\textsubscript{6}O\textsubscript{6}[Na\textsubscript{3}PS\textsubscript{4}]Na\textsubscript{12}Sn\textsubscript{4}.

References: