A new candidate of anode materials MAX phase (Nb$_2$SnC)

Shuangshuang Zhaoa, Gang Chena, Yury Gogotsiab, Yu Gaoa*

aKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China.

bA. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.

E-mail: yugao@jlu.edu.cn (Y. Gao)

The material Nb$_2$SnC combining advantages of MXene and Sn formed by heating the mix powder of Nb, Sn and carbon black1,2. Herein we report on the electrochemical intercalation of Li ions into Nb$_2$SnC, it displays a higher capacity than as-produced other MXenes and graphite. When tested as anode for lithium ion batteries, the charge/discharge capacity of the Nb$_2$SnC anode increases with cycling. For instance, after 600 charge/discharge cycles, the specific capacity increased from 80 mAh g$^{-1}$ to 150 mAh g$^{-1}$, at a current density of 0.5 A g$^{-1}$, and the capacity increased from 110 mAh g$^{-1}$ to 210 mAh g$^{-1}$ at 0.05 A g$^{-1}$. It is demonstrated that when Li ions intercalate into Nb$_2$SnC, the expansion of the Sn will open the layer by itself, the increasing capacity with cycling was considered evidence for the process3, as confirmed by scanning electron microscopy and transmission electron microscopy. Since Nb$_2$SnC is just one of many MAX phase, this work lays the foundation for the development of the MAX phase as the anode of the lithium batteries.

Figure 1: XRD patterns of Nb$_2$SnC

Figure 2: Cycling performance of Nb$_2$SnC at 500 mA g$^{-1}$

References:

